How do you keep AI-generated applications consistent as they evolve over time?

Hi HN,

I’ve been experimenting with letting LLMs generate and then continuously modify small business applications (CRUD, dashboards, workflows). The first generation usually works — the problems start on the second or third iteration.

Some recurring failure modes I keep seeing: • schema drift that silently breaks dashboards • metrics changing meaning across iterations • UI components querying data in incompatible ways • AI fixing something locally while violating global invariants

What’s striking is that most AI app builders treat generation as a one-shot problem, while real applications are long-lived systems that need to evolve safely.

The direction I’m exploring is treating the application as a runtime model rather than generated code: • the app is defined by a structured, versioned JSON/DSL (entities, relationships, metrics, workflows) • every AI-proposed change is validated by the backend before execution • UI components bind to semantic concepts (metrics, datasets), not raw queries • AI proposes structure; the runtime enforces consistency

Conceptually this feels closer to how Kubernetes treats infrastructure, or how semantic layers work in analytics — but applied to full applications rather than reporting.

I’m curious: • Has anyone here explored similar patterns? • Are there established approaches to controlling AI-driven schema evolution? • Do you think semantic layers belong inside the application runtime, or should they remain analytics-only?

Not pitching anything — genuinely trying to understand how others are approaching AI + long-lived application state.

Thanks.

1 points | by RobertSerber 1 hour ago

0 comments